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   Abstract 

 The C16 ′ -C23 ′  fragments of enacyloxins, a series of antibiot-
ics isolated from  Frateuria  sp. W-315, were synthesized from 
 d -arabinose.  
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  In the preceding paper, we described our synthesis of a C9 ′ -
C15 ′  fragment  1  of enacyloxins (ENXs) (Furukawa et al. , 
2011 ). As a continuation, we began to prepare a C16 ′ -C23 ′  
fragment  A , a nucleophilic counterpart of  1 , from  d -arabinose 
to construct a C9 ′ -C23 ′  polyol fragment (Scheme  1  ). The ste-
reochemistry of 17 ′ ,18 ′ ,19 ′ -positions could be derived from 
2,3,4-positions of  d -arabinose. 

 First, we chose a route via an alkyne (Scheme  2  ). 3,4- cis-
 Dihydroxy group of  d -arabinose was selectively protected as 
an acetonide ( 2a ) (Ballou , 1957 ; Kiso and Hasegawa , 1976 ). 
Oxidative fragmentation of  2a  was accomplished by Le ó n ’ s 
procedure (Le  ó n et al., 2006 ) to give erythrose derivative 
 3 . In our case, the intermediary formate was not isolated. 
Nucleophilic addition of 1-butynyllithium gave a diastereo-
meric mixture (4 RS )- 5  ( R/ S = 2.5:1). The undesired  S -isomer 
could be removed after reduction of the triple bond [( E )- 6a ]. 
Although ( E )- 6a  has the same stereochemistry with  A , the 
elimination of the asymmetry of 2-position of  2a  and the sepa-
ration of  R/S -isomers are problems. 

 Thus, direct elongation of the anomeric 1-position of  2a  
was examined. Several  2a  derivatives with a protection of the 
2-hydroxy group were prepared (Scheme  3  ). Carbamoyl ( 2b ), 
 p -methoxyphenylmethyl (MPM,  2c ), and TBS ( 2d ) (Enholm 
and Trivellas , 1989 ) ethers were prepared via a benzyl ether  7  
(Ballou , 1957 ). Whereas the 1-position of  2a  was selectively 
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 Scheme 1    Retrosynthetic analysis of the C16 ′ -C23 ′  fragment.    
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 Scheme 2    Alkyne route. (a) Kiso and Hasegawa, 1976. (b) NaIO 4 , 
NaHCO 3 , CH 2 Cl 2 -EtOH-H 2 O (57 % ). (c) EtC ≡ CH, BuLi, THF, -78 ° C, 
( R/S  = 2.5:1, 76 % ). (d) i. LiAlH 4 , ether, refl ux. ii. separation (66 % ).    

oxidized with iodine ( 4a ) (Stewart et al. , 2002 ), the remaining 
2-hydroxy group was protected as TBDPS and MOM ether to 
give  4e  and  4f , respectively. The lactonic carbonyl group of 
 4e  was again reduced by DIBAL to give  2e . 

 The representative results of Wittig and the related reactions 
of hemiacetals  2a  –  2e  are listed in Table  1  . Usual conditions for 
Wittig reaction gave no olefi n product (entry 1), and thus we 
applied Fitjer ’ s harsh conditions (Fitjer and Quabeck , 1985 ). 
Unprotected and TBDPS protected hemiacetals  2a  and  2e  
afforded olefi n  6a  and  6e , respectively, in 70 %  yield; however, 
these products ( E /Z = 1:1) were an inseparable mixture (entries 2 
and 10). Ohira reagents (Ohira , 1989 ) gave an alkyne  9  in mod-
erate yield (entry 4). The low reactivity of the carbamate  2b  was 
due to its high polarity (entries 5 – 7). Other reactions such as 
Julia olefi nation and Wittig-Schlosser reactions gave a complex 
mixture or recovered a starting material (data not shown). 
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 Scheme 3    Preparation of various substrates for chain elonga-
tion. (a) i. BnOH, AcCl. ii. 2,2-DMP, PPTS (97 % , two steps). (b) 
i. NaOCN, TFA, CH 2 Cl 2  (97 % ). ii. H 2 , 10 %  Pd-C, EtOH. (c) i. 
NaH, MPMCl, DMSO (71 % ). ii. Raney Ni (W 2 ), EtOH (26 % ). (d) 
i. TBSCl, imidazole, DMF. ii. H 2 , Pd(OH) 2 , NaHCO 3 , EtOH (95 %  
from  7 ). (e) i. I 2 , NaHCO 3 , acetone-H 2 O (60 % ). (f) i. TBDPSCl, imi-
dazole, DMF (78 % ). (g) MOMCl, ( i -Pr) 2 NEt, CH 2 Cl 2  (quant.). (h) 
DIBAL, CH 2 Cl 2  (quant.).    
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 Scheme 4    Synthesis of C9 ′ -C15 ′  fragment. (a) i. PrP(O)Ph 2 , BuLi, 
THF. ii. NaBH 4 , EtOH-H 2 O. (b) NaH, DMF [10 %  for ( E )- 6a  and 
54 %  for ( E )- 6f ]. (c) i. TsCl, Et 3 N, CH 2 Cl 2 . ii. AcOH-H 2 O. iii. NaH, 
THF. iv. SEMCl, ( i -Pr) 2 NEt, CH 2 Cl 2  [41 % , four steps from ( E )-
 6f ]. (d) MgBr 2 , CH 2 Cl 2  (quant.). (e) PPh 3 , THF (15 % ). (f) PhSSPh, 
NaBH 4 , EtOH. ii. Mo 7 O 24 (NH 3 ) 6  · 4H 2 O, H 2 O 2 , EtOH (40 % ).    

 Table 1        Wittig and related reactions of the hemiacetals.  
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Entry Hemiacetal Conditions Product
( E/Z )

Yield
( % )

1  2a Ph 3 PPrI, NaH, CH 2 Cl 2 , 0 ° C – 20 ° C   –   – 
2  2a Ph 3 PPrBr, KO t -Bu, toluene, refl ux  6a  (50:50) 70
3  2a Ph 3 PMeBr, KO t -Bu, toluene, refl ux  8a 78
4  2a Ohira reagent, K 2 CO 3 , MeOH  9 40
5  2b Ph 3 P =  CHCO 2 Et, toluene, 50 ° C  10  (43:57) 5
6  2b Ph 3 P =  CHCO 2 Me, CH 2 Cl 2 , 50 ° C  10 ′   (10:90) 21
7  2b (EtO) 2 P(O)CH 2 CO 2 Et, NaH, DMF  –  – 
8  2c Ph 3 PMeBr, KO t -Bu, toluene, refl ux  8c 70
9  2d Ph 3 PPrI, BuLi, toluene  6d  (0:100) 32
10  2e Ph 3 PPrBr, KO t -Bu, toluene, refl ux  6e  (50:50) 70
11  2e Ph 3 PMeBr, KO t -Bu, toluene, refl ux  8e 10
12  2e (Ph 3 PCHBr 2 )Br, Zn, 1,4-dioxane  11 15

 Because the separation or isomerization of the  E/Z -isomers 
( 6a ,  6d , and  6e ), chain elongation of alkenes ( 8e  and  11 ), and 
alkyne  9  failed, Wittig-Horner reaction (Buss and Warren , 
1985 ) with lactones  4e  and  4f  was examined (Scheme  4  ). 
Nucleophilic attack of the anion derived from diphenylpro-
pylphosphine oxide to  4e  followed by reduction with NaBH 4  
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afforded  12e . As  1 H NMR was very complex, crude  12e  was 
treated with NaH. Only  E -isomer without TBDPS group 
( E )- 6a  was isolated in 10 %  yield. The same reaction sequence 
was performed using alkaline tolerable MOM protect-
ing group, giving ( E )- 6f  in 40 %  yield. The corresponding 
( Z )-isomer was not detected. ( E )- 6f  was converted to a 
3-SEM-oxy 1,2-epoxide  13  to discriminate 2,3-oxygen func-
tions, and the epoxy ring was cleaved with MgBr 2  in CH 2 Cl 2  
to give a bromohydrin  14 . Finally, the C16 ′ -C23 ′  fragments, 
Wittig salt  15 , and Julia sulfone  16  were prepared. 

 In conclusion, the C16 ′ -C23 ′  fragments, Wittig salt  15 , 
and Julia sulfone  16  were prepared in diastereomerically pure 
forms from  d -arabinose using Wittig-Horner reaction as the 
key step. Coupling reactions of the C16 ′ -C23′ fragments with 
the C9 ′ -C15 ′  aldehyde are under investigation.  
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